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Abstract The additional resistivity of a q w m m  film due to an obstacle is investigated. The 
film is treated by a semi-classical formalism whilst the obstacle is characterized by its quantum 
mechanical scattering cross-section. The film intrinsic scaitering mechanism allows for the 
adaptation of an arbitrary density distribution to a characteristic ‘ideal‘ distribution over the 
channels. Special mention is paid to the multiple-scattering cycles kweea the obstacle and its 
surroundings, i.e., the s c a r i n g  background of the film. The analysis of these backscanering 
processes leads to a selfconsistent equation for the current density incident on the scatterer. For 
the general m e  of an arbitrarily strong obstacle and many conducting channels, this equation 
system can be solved only numerically. However, the formalism becomes handy if the obstacle 
scatkm only weakly. A condition is found for the obstacle to be considered as weak. On the 
other hand, if one considen only one conducting channel it is possible to solve the transport 
problem analytically even for a strong obs!acle. In this case, we find an expression for the 
resistivity which contains the scanering cross-section in a non-linear manner. This non-linearity 
was already predicted in 1957 by Landauer. 

1. Introduction 

Electronic transport through very thin films is a field which still attracts great interest 
among experimental as well as theoretical physicists. One of the first but nevertheless very 
successful attempts to describe the electronic aansport in thin films with rough surfaces was 
the Fuchs theory [l] and its extensions and generalizations [2, 31. Fuchs’ theory rests on 
the description of the rough surface with a single ‘specularity’ parameter, and even very 
sophisticated non-classical theories re-cover its results in the thick-film limit. Whereas this 
theory was basically classical, quantum mechanical approaches [4,5,6,7, 8,9] have been 
developed. A quantum mechanical treatment of transport in thii films reveals quantum 
size effects which are particularly strong in the presence of surface roughness. The most 
remarkable feature is a roughness-induced C6 dependency of the resistivity if the film 
thichess d tends to zero [lo, 6, 11, 8, 91. 

On the experimental side, recent film growth techniques have made it possible to 
manufacture ultra-thin films with a nanometre scale thickness [12, 13, 14, 15, 161 and 
even with atomically sharp interfaces [17]. Is has been noticed by many authors 
[IS, 19, 20, 21, 221 that these films show a bimodal roughness spectrum composed of 
a micro-roughness on the atomic scale and large terraces of approximately constant height. 

The influence of the micro-roughness on the resistance of thii films seems to be well- 
investigated. The underlying model of micro-roughness is mostly that of a statistically 
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cormgated surface with a correlation length and an RMS, both small compared to the Fermi 
wavelength of the electrons [8]. In a scattering picture using bumps randomly distributed 
over the surface [9,23] this means that the extension Rob of the bosses forming the roughness 
is much smaller than AF. For a broad review on this topic see [24, 251. 

On the other hand, a question still to be solved is that of how terraces with an extension 
comparable to 01 even larger than A.n act on the electronic transport in quantum films. For 
such terraces the simple s-scatterer picture definitely fails, and one is forced to look for a 
well-suited method to handle the quasi-two-dimensional scattering problem. We will show 
here that it is possible, in a semi-classical approach, to express the additional resistivity 
of an obstacle in an otherwise homogeneous resistive quantum film as a function of its 
scattering cross-section o,..(.p. 9’). 

In order to have an appropriate tool to investigate this problem we take advantage of a 
recently developed theory 1261. There, the influence of an obstacle on the transport through 
a resistive quantum wire is the major objective. We have extended the theory to a quasi- 
two-dimensional system (quantum film), retaining the same assumptions as made in [26]. 
We only recall them here. More details and the underlying physical concept, however, can 
be found in [26]. 

(i) The system is filled with a uniform background of randomly distributed weak 
isotropic scatterers. The finite mean free path (MFP) gives rise to a certain intrinsic film 
resistivity. 

(ii) The de Broglie wavelength of the particles is much smaller than the imp. The 
condition A F / I  << 1 is the basic condition that renders the quasi-classical treatment of the 
in-plane motion possible at all. 

(iii) As the imp is much larger than the film thickness, the lateral quantization is 
conserved. The in-plane motion, however, is described in classical terms as a diffusion 
problem, neglecting all interference effects that would occur in a consequent quantum 
mechanical treatment. 

(iv) In OUT model, the current is driven by a density gradient which takes a constant 
value far from the obstacle. After having solved the diffusion problem we transform the 
results to the usual field-driven case using the Einstein relation. 

(v) The results for the resistivity are given at zero temperature. In this limit, all 
problems conceming ensemble averages disappear since only particles with the Fermi energy 
contribute to the transport. Both density and current density are taken at the Fermi level. 
All scattering processes do not change the particle energy. 

The scattering background allows for transitions between different lateral modes and 
different directions of motion. In the homogeneous film, this leads to a distribution where 
the density of each individual channel is proportional to the channel-specific local density 
of states (LDOS). In the quasi-two-dimensional case, the channel LDOS does not depend on 
energy, and hence all channel densities are equal in the homogeneous film. If this distribution 
is disturbed (e.g., by scattering at an obstacle), the film background relaxes the densities in 
a way that the deviation from the ‘ideal‘ distribution decays with increasing distance from 
that obstacle. Because of its ability to equilibrate disturbed density distributions, such a 
system is called ‘adaptive’ [26]. 

An approach similar to the present one was demonstrated by Chu and Sorbello 1271 
where much emphasis was laid on the effects of multiple quantum mechanical scattering 
between the walls and the obstacle. Here we assume the obstacle scattering cross-section 
comprising all those effects to be given. As in 1271, we calculate a long-range density 
dipole around the obstacle which gives rise to the additional resistance wanted. This is the 
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so-called residual resistivity dipole (RRD) first introduced by Landauer in his seminal 1957 
paper [28] (see below). In the calculation of the RRD, the angle- and channel-dependent 
current density jF(p) incident on the obstacle holds a key position. In [U] it is assumed, 
within a Boltzmann model, that jF(p) is a shifted Fermi circle. Here we show that this 
can be justified only if the obstacle scatters weakly. We will see that the incident currents 
are in general very involved quantities that are to be determined self-consistently: particles 
once scattered by the obstacle can also be scattered by the film background and return to 
the obstacle again, thus forming anew an incident current. Therefore also the near density 
field is generally influenced by the relaxation mechanism of the film, in contrast to what 
is indicated by some remarks in [27]. From a detailed analysis of these repeated scattering 
relaxation processes we can derive a criterion for the applicability of the said approximation 
as used in 1271. 

If we restrict ourselves to a two-dimensional system (which is practically done by 
taking only one conducting lateral mode), we can solve the self-consistency problem for the 
incident currents analytically, without restriction to weak scatterers. We get a very simple 
expression for the resistivity due to an obstacle. Its scattering cross-section U enters the 
extra film resistivity in a non-linear form, S&l, - u/(l - ao) where the product ao is a 
quantity comprising the effect of repeated scattering from the obstacle into the film medium 
and back to the obstacle. Summing up all these backscattering cycles, one finds the value of 
the enhancement factor to be (1 -ciu)-'. Based on the same multiple-scattering arguments, 
Landauer predicted such a non-linear behaviour already in his very first works on the RRD 
concept 128, 291. Even though Landauer addressed systems with arbitrary dimensionality 
(d = 1-3) in his general considerations, it seems that only the result for onedimensional 
systems became widely recognized in transport theory. He found that the extra resistance of 
an obstacle with reflection coefficient r is proportional to r/(l - r )  showing a pronounced 
non-hear dependence on the Scattering behaviour. It is clear that in higher dimensions the 
non-linearity is not as strong as in the one-dimensional case for the particles can circumvent 
the obstacle. To our best, but restricted, knowledge, we have derived for the first time an 
analytical formula for the resistance which takes into account these multiple-backscattering 
processes for d = 2. This can be viewed as a generalization of the one-dimensional 
Landauer formula. 

In multi-channel wires, the mathematical expressions become more complicated. This 
prevents us from solving the problem for the general case. However, one could find the 
solution of the equation system arising in the form of a perturbational series. 

There are. throughout the paper two restrictions to the obstacle: 

(i) its extension Rob is small compared with the film MFP; 
(ii) its scattering cross-section obeys the symmetry relation onn&, (0') = unnn,(p - q'). 

The first condition ensures that it is possible to treat the density near field and the far 
field separately. The second restriction is not of principal nature, but it helps substantially 
to simplify the formulae. 

The organization of this paper is as follows: in section 2, we will formulate the basic 
equations for the kinetics in the homogeneous film and find their long-range and relaxation 
solutions, respectively. We will show how to calculate the RRD from the scattering behaviour 
of the obstacle. Section 3 will make contact between the RRD and the additional resistivity. 
Section 4 then illushates the application of our method to some well-investigated models 
and shows that the results obtained are sensible. Final conclusions are given in section 
5. Appendix A shows how to obtain the basic differential equation used throughout the 
paper from the kinetic equation for the film. In appendix B, the mathematical procedure 
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for calculating incident currents from densities around the obstacle is sketched. There, we 
will derive the condition for a scatterer to be considered as weak. 

2. Densities and currents in the film 

2.1. Kinetics of a quantumflm 

Assume a film of thickness d where panicles move in N channels labelled n. We decompose 
both the 2D current density j n ( r )  and the 2D particle density Q"(T) of each lateral mode 
according to particles moving into all possible directions p: 

ity are c ne( 1 by 
the relation ja(r ,  p) = U, &(r. p), This decomposition implies the neglect of all quantum 
mechanical interference. Here and in the following, angular integrations are performed in 
the interval (0, Za). Note $at all densities and currents throughout this paper are related 
to particles at the Fermi energy (refer to section 1). In the diffusion problem to be solved 
here, a constant equilibrium density can always be added without changing the results. 

There are transitions between different modes and angles, respectively, due to the 
resistive background. We introduce rates ynm for the transition from mode m into mode n. 
The transitionrates are proportional to theLDoS of the channel the particle is scattered into. 
This means in a two-dimensional model where the LDOS of each channel is independent of 
the energy that 

Ynm = Ymn. (3) 
The scattering mechanism is assumed to be isotropic; 'thus no angles occur in ynm. and it is 
assumed to be strictly local, which allows us to state the simple kinetic equation 

where &,+ alar is the derivative in the a, direction, and 

~n = C y m n .  
m 

Here and in the following, the sums are taken over all conducting channels. After an 
integration of the kinetic equation over all angles we get 

The total current 

n 

is stationary, of course, whilst the channel currents are source-free only if the density is 
the same for all channels. This is what we called in section I the 'ideal', i.e. unperturbed, 
density distribution. 
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From the kinetic equation we can derive a non-local relation between the current j,,(r) 
and the density gradient at all points of the film. Details are shown in appendix A. We 
repeat the result equation (A2) found there: 

We note that the currents are generally determined not only by the local density gradient 
but also by contributions from a region around r which is of order yJv,,. If the density 
gradient is constant within this range we find the usual two-dimensional diffusion law 

with 1. = v,/y,,. Furthermore, we find from equation (6) that the current distribution over 
the channels in the case of an ideal, i.e., relaxed, density distribution is j, - u.1.. 

Inlrcducing equation (6) into (5) (see appendix A for a major simplification) gives the 
linear differential equation system 

Figure 1. The obsracle (hatched) centred at the origin is entirely enclosed by the auxiriary circle 
(dashed) with radius R .  One possible direction of an incident current is sketched. The asymptotic 
current Rows in the x direction ((p = 0). The current-indued density dipole is indicated by the 
large regions labelled + for the excess density and - for the deficit respectively. 

Now we look for solutions of equation (8). We will restrict ourselves to solutions outside 
a circle {R}  with radius R where they obey a Dirichlet boundary condition e,(R) = p:(R) .  
(ec itself will be obtained from the scattering behaviour of the obstacle in section 2.3.) 

There are two kinds of solutions, detailed below. 

(i) We make the msati 

where the division by Hj')(iKAR) is only for later convenience. The HF)(ii) are the 
Hankel functions of purely imaginary argument which are often called modified Hankel 
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functions denoted by Kp(x) [30]. Introducing this ansafz into equation (8) leads to the 
Linear eigenvalue problem 

[Ymnaihn - ~ n m a i m ]  (10) 2 -  1. K& eh  = 
m 

where the meaning of the indices becomes clear: the integers A = 1 , .  . . , N - 1 label 
the eigensolution &,, belonging to the inverse decay lengths IC*. The integer index 
p = 0, . . . , CO denotes the angular dependency of the solutions. The decay lengths k;' 
are generally of the order of the film MFP. 

(U) One solution of the Laplace equation for the case where all channel densities are 
equal (see the remarb after equation (5))i thus 

a2 p e n @ )  = 0. (11) 

The solution for the Dirichlet problem mentioned above can be found by means of the 
so-called inversion method outlined in [31] from where we take 

For formal completeness, we attribute an index h = 0 to this solution as well as an 

The boundary condition can be fulfilled by an appropriate superposition of all N 
index n although eopn is the same for all channels. 

solutions eippn(R), i.e., 

From the symmetry of equation (8) we find the relation 

&Un&&n = 6iU A , A ' = O ,  ..., N - 1  
n 

(13) 

(14) 

where the normalization of the &,, has been properly fixed. This orthogonality relation will 
be used below in order to calculate the coefficients Bpi. 

2.2. The farfield and the density dipole 

The superposition 

gives the density distribution, spatially as well as over the lateral modes, which arises from a 
given &(R) if e.(r) reproduces &(R) for T --f R Now we will calculate the coefficients 
Bpi. On the circle, equation (15) &es the simple form 

e3R) = Bpi& cos PV, (16) 
i P  

if we use the representations (9) and (12). The coefficients Bpi can be extracted from (16) 
by a two-step procedure. The first step eliminates the sum over p by projecting &(R) 
onto cosp9, the second step uses the orthogonality relation (14) of the eigensolutions. This 
gives 
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where the integration is performed on the circle {R}.  Consider now the long-range behaviour 
of the density distribution resulting from a given &(R). Obviously only the term with 
A = 0 in (15) gives rise to a long-range change in the density. This change will lead to 
an additional resistance; see section 3. Apart from an uninteresting rotationally symmetric 
pact originating from the equilibrium particle density, the leading angle-dependent term of 
equation (12) is the dipole field 

(18) 
cos (O eo&-) =~eo(r) = Pd- r 

lrl --f CO : 

with the dipole moment 

This just represents the residual resistivity dipole introduced by Landauer [28]; see also 
[U]. Thus we need only the coefficient Blo which is found from equation (17) to be 

2.3. The nearjield of the density 

Now we are going to calculate the density near field e;(R) from the scattering behaviour of 
an obstacle. The obstacle is centred in the origin and entirely enclosed by the circle {RI. We 
characterize the obstacle by its quasi-21, differential cross section uin,(rp, p'). We assume the 
scattering cross-section to obey the symmetry relation u,,,,(p, (o') = unnn,(p -p'). Moreover, 
its extension Rob is assumed to be small compared to the film MFP. Apart from the reason 
already mentioned in section 1, this condition also ensures that the mathematical procedure 
which leads to equation (A6) in appendix A and to equation (8) remains applicable in  the 
presence of the obstacle. In appendix A, the integrations / dy / dF (. . .) were performed 
assuming the film itself as homogeneous. The error now introduced remains small if the 
obstacle region is small compared to the total region where the main contributions to the 
integral come from. 

If currents jF(p) are incident on the obstacle, the total current density outgoing radially 
through the circle [RI is 

jn(O)R) = j?(VR) + Jjn(PR) (20) 

where 

The second term in the curly brackets takes into account that the current in the forward 
directi0n.k diminished by the total scattered current. 

Thus the change of the density on (RI due to the presence of the obstacle is simply 
Se;(R) = U;' Sjn((OR) We explicitly note that this relation is correct only in the quantum 
mechanical far-field region. Therefore, the radius R of the circle enclosing the obstacle must 
be larger by some wavelengths than the obstacle itself. For Rob >> h p ,  R = Rob is a good 
approximation whereas for the opposite case R must be of the order of some wavelengths. 
In other words, we omit all density contributions from the quantum mechanical near field. 
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We believe this approximation to be justified because the quantum mechanical length scale 
is much smaller than the length scale of the diffusion and relaxation processes which is of 
the order of the film MFP. The relaxation due to the film background is noticeable only in 
a region where the density can be well-described by using the scattering far field. 

For the additional resistance it is sufticient to consider only the density change 6e:(R) 
due to the obstacle instead of the total density on [E}. 

Equation (20) contains the incident current densities as essential ingredients. They are 
very involved quantities as they comprise not only the primarily incident current distribution, 
i.e., that of the homogeneous film far from the perhubation (see our remarks after equation 
(6)), namely 

but also a contribution SjF(q) that originates from the relaxation mechanism of the film: 
particles scattered by the obstacle are allowed to return to it and thus to form anew an 
incident current which, on its turn, undergoes the same scattering-relaxation mechanism. 
The sj?(q) art? thus determined self-consistently via an equation of the form 

where is a linear operator which will be derived in appendix B, and the index 1 indicates 
the iestriction to terms with p = 1 which are the only contributions of importance here. 

It seems impossible to determine Sj$q) analytically for the general case. However, 
if we make the simplifying assumption that the obstacle scatters only weakly, j? can be 
replaced by the unperturbed current density distribution (21) which would be present in the 
absence of the obstacle. 

From appendix B, equation (BZ), we take the condition of validity for this 
approximation: 

U" 1 -1n- << 1, 
I R  

This can be roughly understood in the following way. For the resistance, only terms 
belonging to the dipolar term with p = 1 are of importance. Contributions to Si'" come 
mainly from a region of order 1 around the obstacle. Since the p = 1 density terms under 
consideration here behave there like ( p a )  R l r ,  the resulting integral for the current density 
is proportional to ( p u l l )  ln(l/R) where the factor 1-' accounts for the effectiveness of 
background scattering. 

Normally, a sufficiently small scattering cross-section can be achieved by a sufficiently 
small extension R of the obstacle. There Me, however, special resonance cases [32, 23, 271 
where un sharply rises. In these cas&, care is needed. On the other hand, the condition of 
a sufficiently small quantity (23) dan always be satisfied if the film MFP is sufficiently large. 

Introducing Eqs.(21) and (20) into the dipole moment gives 

From equation (24) we have derived a formula that allows us to calculate the RRD dipole 
from the scattering cross section of an arbitrary but, in the above sense, weakly scattering 
obstacle. Note that the scattering cross section entering pd in equation (24) is related to 2d 
current densities and therefore has the dimension of a length. 
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3. Resistivity 

In this section we show the connection between the RRD and the additional resistivity due 
to the scatterer in the limit T = 0. 

Note that all densities and current densities used in the preceding section are two- 
dimensional quantities. In order to make contact with real films with thickness d in z 
direction, we now take the usual 3ddensity Q;~~)(Z) = en Ix.(z)lz and jd3D)(z) = j,, Ix&)lz. 
The xn(z)  are the lateral eigenfunctions of the film. In the case of hard film boundary 
conditions. they are of the form x.(z) = m s i n ( n n z / d ) .  

Instead of the particle density itself we will in the following use the quantity u(x ,  y )  = 
Q ( ~ ~ ) ( x ,  y .  z ) /n (E ,  z )  where 

l X n ( Z ) l 2  2nh2 " 
m 

n(E,  z )  = n-'Sm G = - 
is the quasi-twedimensional mas, and m is the electron mass. Note that U does not 
depend on the lateral coordinate z. Now we assume that independently acting obstacles are 
distributed with a mean volume density N over the entire film. We chose two arbitrary 
points ( x , ,  y .  Z I )  and (xz,  y .  Z Z )  in the film. Then the difference Su(x1, y )  - Bu(x2, y )  
additionally introduced by this random distribution of obstacles is 

where 
obstacle at position 7,. Configurationally averaging over all obstacle positions gives 

ylr,)  means the density dipole field from equation (18) at ( x .  y )  due to an 

This difference does not depend on y .  Now it makes sense to identify (Su(x1, y )  - 

Thus the additional resistivity Spar,,, reads (in terms of 
6u(xz, y)} with an additional potential drop eSU along the.x direction. 

In order to avoid any confusion of the particle density e(+) and the resistivity we write 
for the latter pelm. 

4. Examples 

It is illustrative to take as a first example a two-dimensional system by restricting our 
calculations to only one channel. In this case, no interchannel relaxation occurs, of course, 
and we can calculate self-consistently the incident current density without restriction to weak 
scatterers. First we calculate the coefficient E m  which enters equation, (B3) and represents 
the main constituent of the dipole moment. Using equation (20) we have 

Bto = PUT $, (28) 

where we have used the abbreviations 

U T E  ~ @ ( ~ - c o s @ ) u ( @ )  s 
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E 1 dQ cos Q j'"'(Q). 

Inserting Blo into equation (B5) gives 

and thus 

This formula and the preceding one can be interpreted as follows. The primarily incident 
carrier flux causes a density excess of particles reflected by the obstacle and a density deficit 
behind the obstacle. Those particles which are scattered by the surrounding film medium 
have the chance to reach the obstacle again and to give a correction to the incident current. 
The angular dependence of this correction corresponds to the dipole of the primary scattering 
process at the obstacle. An infinte repetition of these processes results in the geometrical 
series found in equation (30). 

We want to point out a subtlety of the result (30) concerning the choice of the 
radius R. For obstacles large compared to the wavelength, the enhancement factor is 
simply (1 - ln(l/&b) (UT/l))-'. However, for the opposite h i t  of an obstacle small 
compared to AF, R is of the order of AF, and the enhancement factor becomes approximately 
(1 - ln(l/AF) (UT/l))-'. Even for resonant point-like scatterers, UT is maximally of order 
AF. This means that for point-like scatterers the smallness of the correction goes definitely 
beyond the limits of OUT quasi-classical model where A F / I  is a priori negligible. 

The same kind of a non-linear relation between resistance and scattering properties of 
the obstacle as found here shows up in the one-dimensional Landauer formula where the 
additional resistance is proportional to r / ( l  - r )  where r is the reflection coefficient; see 
for example [33].  From the very beginning of the RRD concept, such a non-linear relation 
has also been predicted to exist in two- and three-dimensional systems, repectively [28,29] .  
However, the non-linear effect was expected to be less pronounced in higher dimensions as 
the current can bypass the obstacle. This is what we have found in equation (30). 

Next we investigate point-like (Rob << AF) obstacles in a multi-channel film. We take s 
scatterers, each with scattering amplitude f, which are randomly distributed with a volume 
density N .  Far from backscattering resonances due to the film wall, [27,32] ,  unv, for each 
individual scatterer reads [32] 

with k,, = (m/h)u, = (kg - nznz/dz)-lp and kp the Fermi wavenumber. depends on 
the lateral position z of the scatterer but not on any angular arguments. The channel MFP 
1. is assumed to be proportional to the channel velocity U,. Averaging U,., over the film 
thickness and inserting Ernn,) into the general formula (27) gives the well-known result [4 ,9 ]  

Finally, we consider short-ranged snrface bumps that are randomly distributed with a 
and have a scattering amplitude f,. They serve as a model for mean surface density 
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surface micro-roughness 19, 231. The scattering theory for such surface imperfections has 
been shown to be similar to that of volume scatterers in [23] and [9] .  From there we take 

This results in the additional resistivity 

In the limit of very thin films (i.e., N - I), Sp exhibits the pronounced d-6 behaviour 
[IO, 6,8,9] (note that k, itself depends on d ) .  In the limit of thick film, N > 1, the Fuchs 
result [I, 27, 91 is recovered. The typical quantity N,lfSlZ corresponds, up to a factor of 
the order of unity, to the fraction (1 - p )  of diffusely scattered particles where p is Fuchs' 
specularity parameter. 

These three examples that served as a test of the present theory show that the semi- 
classical approach gives reasonable results for well-investigated situations in the case of 
weak scatterers. This encourages us to apply our method to more complicated obstacles 
such as shallow terraces with an extension R comparable to or even larger than ?+ but again 
small against 1. 

5. Summary 

It was our goal here to find, within a semi-classical framework, the additional resistivity 
due to an obstacle which is characterized hy its scattering cross-section unnn,(pr p'). The 
intrinsic film resistivity is caused by a background of randomly distributed weak scatterers 
which allow for transitions between different lateral modes and directions of planar motion. 

Our method rests on a recently developed semi-classical theory [26] for transport in 
quantum wires. We have demonstrated how this theory can be re-formulated for the quasi- 
two-dimensional case. 

Starting from a local kinetic equation we have derived second-order differential 
equations that describe the relaxation of an arbitrary density distribution given along a 
closed contour. Two qualitatively different solutions have been found, one of them giving 
rise to a long-range density dipole. This is the so-called residual resisitivity dipole (RRD) 
introduced by Landauer 1281. 

The current density incident onto the obstacle plays an essential role in our theory. We 
have shown that and how it can be calculated self-consistently. The condition has been 
derived under which one can treat an obstacle as weak. In this case, the formulae are 
strongly simplified, and one gets an analytical expression for the additional resistance. The 
said condition can be satisfied either by sufficiently small and non-resonant scatterers at a 
given film MFP, or by a sufficiently large MFP. 

For only one conducting lateral mode, however, we were able to solve analyically the 
self-consistency problem of the incident currents for arbitrarily strong obstacles. As a result, 
we have derived an expression where the resistance depends on the scattering cross-section 
in a non-linear manner. This agrees with the prediction by Landauer [28, 291 that the 
multiple-scattering processes between the obstacle and surrounding medium should result 
in a resistance formula of the form &pal, - o/(l - au). The enhancement factor turned 
out to be negligible, within our quasi-classical framework, for obstacles small compared to 
the wavelength. 
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Furthermore, we have considered some well-investigated examples of obstacles in multi- 
channel wires (i.e., volume and surface scatterers) in order to check our method. 

With the formalism developed in the present paper, it is possible to calculate the 
additional resistivity due to obstacles which are embedded in a multi-channel resisitive 
quantum film treated semi-classically. The only restrictions on them are that they are much 
smaller than the film MFP and that they are rotationally symmetric. The whole formalism 
becomes very handy if we deal only with weakly scattering obstacles. Then, the incident 
current density c m  be replaced by the current density distribution of the unperturbed film. 

One possible example for future investigations could be extended perturbations of the 
film such as large terraces on the film surfaces discussed in the context of bimodal roughness 
spectra [I8, 20, 19, 211 or even hoIes in the film. They possess a fairly complicated 
U,&I - rp') which will be discussed elsewhere. 
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Appendix A. 

The kinetic equation in its integral form reads 

Inserting this form into equations (2) and integrating partially with repect to i we find 

Hence the source density of the current is 

-J"(r) a .  = -- " j "dv imdiexp( -%)  
ar 2RY" 

(A3) 

On the other hand, if we insert equation (Al) into equation (2). and apply the Laplace 
operator to the expression arising we find 

We can decompose the Lapface operator into its tangential and a radial components, 
respectively, i.e. 
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The thud term on the right-hand side vanishes as the integration is performed over a 
full circle. Using this in equation (A4) and comparing (A4) with (A3) we are left with the 
relation 

Having in mind the generally non-local relation between current and density gradient, 
equation (A6) is surprisingly simple. Combining this with equation (S), we find the 
differential equation system (8). 

Appendix B 

Here we will calculate the quantity 8jy(q). Inserting the density from equations (12) and 
(9) explicitly into the kinetic equation in its integral form, 

we get 

where = RKA, p. = R/l, , .  and c = r / R .  For our purpose, only the coefficient Blo is 
of importance. Therefore, we will consider in the following only the terms which belong 
 to^ p = 1 and denote them by an index 1. One easily convinces oneself that all other terms 
are of no intluence on Blo. Performing the integration dc (. . .) of the two corresponding 
con~butions in the angular brackets of equation (BZ) gives [30] 

Combining the two contributions, we get 

With BIA from equation (17), and 6&(R) from equation (20) we can write the p = 1 term 
of jp(q) in the very compact form 

j,$(v) = i,%) + [j$?(v’)] ((01 (B6) 
where 



Using this equation, one could in principle calculate the dipole moment and thus the 

Finally we can derive a condition under which the approximation jp(q) % j:(q) is 
additional resistivity up to any order by a perturbational series. 

justified. With equation (14) we find 
0" (BSI -TInB, ,  << 1 

which must hold for all It. 
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